Two-faced reactivity of alkenes: cis- versus trans-aminopalladation in aerobic Pd-catalyzed intramolecular aza-Wacker reactions.

نویسندگان

  • Guosheng Liu
  • Shannon S Stahl
چکیده

A number of different PdII catalyst systems have been reported recently for the Wacker-type aerobic oxidative cyclization of alkenes bearing tethered nitrogen nucleophiles. This study examines the stereochemistry of the aminopalladation step with five different catalyst systems: Pd(OAc)2/DMSO (A), PdX2/pyridine [X = OAc (B), O2CCF3 (C)], Pd(IMes)(O2CCF3)2(OH2) (D), and Pd(O2CCF3)2/(-)-sparteine (E). Use of a stereospecifically deuterated cyclopentene substrate reveals that four of the five catalyst systems (A, B, C, and E) promote exclusive cis-aminopalladation of the alkene, whereas both cis- and trans-aminopalladation occur with the N-heterocyclic-carbene (NHC) catalyst system. If stoichiometric Brønsted base (NaOAc, Na2CO3) is added to the latter reaction conditions, however, only cis-aminopalladation is observed. The identity of the nitrogen nucleophile also affects the aminopalladation pathway, with results ranging from exclusively cis- to exclusively trans-aminopalladation. These results have important implications for ongoing efforts to develop enantioselective methods for Pd-catalyzed oxidative amination of alkenes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanistic studies of Wacker-type intramolecular aerobic oxidative amination of alkenes catalyzed by Pd(OAc)2/pyridine.

Wacker-type oxidative cyclization reactions have been the subject of extensive research for several decades, but few systematic mechanistic studies of these reactions have been reported. The present study features experimental and DFT computational studies of Pd(OAc)(2)/pyridine-catalyzed intramolecular aerobic oxidative amination of alkenes. The data support a stepwise catalytic mechanism that...

متن کامل

Palladium-catalyzed intermolecular aminoacetoxylation of alkenes and the influence of PhI(OAc)2 on aminopalladation stereoselectivity.

A modified protocol has been identified for Pd-catalyzed intermolecular aminoacetoxylation of terminal and internal alkenes that enables the alkene to be used as the limiting reagent. The results prompt a reassessment of the stereochemical course of these reactions. X-ray crystallographic characterization of two of the products, together with isotopic labeling studies, show that the amidopallad...

متن کامل

Stereocontrolled Synthesis of Bicyclic Sulfamides via Pd-Catalyzed Alkene Carboamination Reactions. Control of 1,3-Asymmetric Induction by Manipulating Mechanistic Pathways

A new annulation strategy for the synthesis of trans-bicyclic sulfamides is described. The Pd-catalyzed alkene carboamination reactions of 2-allyl and cis-2,5-diallyl pyrrolidinyl sulfamides with aryl and alkenyl triflates afford the fused bicyclic compounds in good yields and with good diastereoselectivity (up to 13:1 dr). Importantly, by employing reaction conditions that favor an anti-aminop...

متن کامل

Highly regioselective Pd-catalyzed intermolecular aminoacetoxylation of alkenes and evidence for cis-aminopalladation and S(N)2 C-O bond formation.

Synthetic methods that achieve oxidative 1,2-difunctionalization of alkenes are very powerful in organic chemistry. Here we report the first examples of intermolecular Pd-catalyzed aminoacetoxylation of alkenes with phthalimide as the nitrogen source and PhI(OAc)2 as the stoichiometric oxidant and source of acetate. These reactions are highly regio- and diastereoselective, and mechanistic studi...

متن کامل

Mechanistic studies of Wacker-type amidocyclization of alkenes catalyzed by (IMes)Pd(TFA)2(H2O): kinetic and stereochemical implications of proton transfer.

The stereochemical course of the amidopalladation of alkenes has important implications for the development of enantioselective Pd-catalyzed "Wacker-type" oxidative amidation of alkenes. We have recently shown that the addition of base (Na2CO3) can alter the stereochemical course of amidopalladation in the (IMes)Pd(TFA)2(H2O)-catalyzed aerobic oxidative amidation of alkene. In this study, the m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 129 19  شماره 

صفحات  -

تاریخ انتشار 2007